
An Approach for Data Integrity Checking and Data
Recovery in Cloud Data Storage

 Charmee V. Desai#1 ,Prof. Gordhan B. Jethava*2
 Computer Science & Engineering Department,

Parul Institute of Engineering & Technology
P.O. Limda, TA. Waghodia, Dist. Vadodara

Gujarat, India

Abstract-Cloud Data Storage is an attractive mean for
storing and managing the outsourced data. As data are
remotely stored, user is not aware of any security
threat. Data modification can done by the untrusted
server , unauthorized user or by some malicious
activity. So user needs to be ensured that their data are
intact. For this various integrity checking techniques for
cloud data storage have been proposed. This paper
presents an approach for checking the integrity of
remotely stored data on cloud. It also uses mechanism
to recover the data if integrity is violated. Proposed
approach uses the metadata of constant size. It stores
the metadata as the metadata of file adversary cannot
access it. As file size of uploaded file is same as the
original file results less communication overhead.

Keywords- Cloud Data Storage, integrity checking
,Network Coding, Data Recovery

I. INTRODUCTION
Cloud storage provides the powerful way of managing data.
It allows to store and manage the data remotely. Users do
not have to buy the expensive hardware and to have
policies to regulate and manage the data. Apart from this
users have to pay only for what they use. Because of the
ubiquitous nature of the cloud, it allows to access the data
from anywhere. These makes cloud storage very popular.
As cloud is distributed in nature, once user uploads the data
user has no control over the data. Data are remotely stored.
Users do not have physical access to the data. So user is not
aware of any security threats at storage site. So to ensure
the integrity of remotely stored data is major
concern.Various integrity check techniques have been
proposed with their pros and cons. With integrity check
techniques users can be ensured that their data are intact at
storage site and not have been modified by an unauthorized
entity.
In 2008 Amazon has faced the downtime after that, they
were not able to recover the original data.[1] In 2006 Gmail
has faced the mass deletion of email which resulted the loss
of data. [2] Cloud Service providers like Amazon, places
explicit statements like they are responsible for any kind of
data loss or data damage to save their reputation. [3] Cloud
service provider are not providing any integrity check
technique explicitly. They are just providing the MD5 etag
value which is updated whenever file is modified remotely.

So it is necessary for user to check the integrity of their
remotely stored data.
This paper proposes an approach to verify the integrity of
data stored at cloud storage server and to recover the data if
integrity is violated.
The rest of paper is organized as follows. The second part
reviews some related work. The third part describes the
proposed approach. Part four is shows the experimental
results and analysis. Further section presents the discussion
and future concerns.

II. RELATED WORK

Many techniques for integrity checking have been proposed
with their pros and cons. [4] Provable Data Possesion
(PDP) in this client pre-computes tags for each block of a
file and stores along with file. Verification is done by
generating a random challenge against a randomly selected
set of file blocks without actually having to retrieve file
blocks. [5]Proof of Retrievability (PoR) in this scheme ,
for the file encoded with error correcting codes sentinels
are embedded for each block. Encryption is performed to
make check blocks indistinguishable from other file blocks.
The verifier challenges the prover by specifying the
positions of a collection of sentinels. The prover returns the
respective sentinels. If prover has modified or deleted a
substantial portion of file, then with high probability , it
will have also suppressed a number of sentinels. Using
error correcting code file can be recovered. [6] MD5 based
in this method message digest is generated from MD5
function which is used as metatdata. For verification this
metadata is used. [7] Encryption Algorithm: In this
method, At broker side a partitioner partitions the file. Tag
generator module generates the tag for each segments.
Hash values for each segment is calculated and stored in
database. Database manager stores all relevant and required
values in database. For verification, verifier retrieves all
encrypted segments from the storage and calculates the
hash of all segments. These values are compared with
respective segment's hash value stored in database. If hash
of all segments matches than file is intact otherwise
tampered. [9] RSA based:In this, method specified is
based on the RSA algorithm which makes use of large
prime numbers. [8] Generate,Encrypt and Append
Metadata: This method is based on XOR operation. First
the file is divided into blocks. For each block metadata is
generated by selected random bits. For Verification
metadata is recalculated and compared with original data

 Charmee V. Desai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2934-2937

www.ijcsit.com 2934

sent by the server. Any mismatch shows the loss of
integrity.[10] is similar to [8]. In this it operates on bytes
rather than bits. It supports the dynamic operations with
less communication overhead for both client and the server.

III. PROPOSED APPROACH
The proposed approach is similar to [] in this method
integrity of only selected bytes are checked. To check the
integrity of entire file keyed hash function is used which
takes the file content and secrete as input and produces the
message digest. This message digest is used as metadata.
For data recovery Random Linear Network Coding is used.
The modified method works in following phases :
Encoding, Metadata Generation, Integrity Verification and
Decoding for Data Recovery. Before uploading the file
,sender encodes the file. Metadata is generated for encoded
file. And then user uploads it to storage server. Verification
is performed using metadata. After verification if data
damage is found then decoding algorithm is executed to
recover the original data.
The proposed approach works in following phases:

Figure 1 Phases of Proposed Work

Encoding:
For encoding purpose Random Linear Network Coding is
used. Data are fetched from the file and then encoded using
this technique.
Metadata Generation:
For metadata generation, first secret key is generated. This
is key and message is input to HMAC function which
generates the message digest which is used as metadata.
Then this metadata is protected using xor function with the
random alphanumeric string generated.
Verification:
In this phase, protected metadata and random alphanumeric
string will be retrieved. Using the secrete key, message
digest of file will be recalculated. This will be xored with
the random alphanumeric string retrieved, which result in
protected metadata. If retrieved and calculated protected

metadata are same then file is intact otherwise file is
tampered.
Decoding:
If file is found tampered , using decoding algorithm
original data are recovered.
Detailed Algorithm
Encoding:
1. Take the file as input from user.
2. Apply Random Linear Network Coding on file.
 For this using random function generate the random nos.
Use this nos as co-efficients of matrix. Perform
multiplication of this matrix with file data.

Metadata Generation
3. Generate secrete key. Store this key to client side.
To generate the secrete key ,use in built function can be
used or manually key can be supplied.
4. Use this key and content of file as input to HMAC
function which generates the message digest. This message
digest will be used as metadata.
5. Use Random Number Generator function to generate
random alphanumeric string which will be xored with
generated metadata. Store this protected metadata and
random alphanumeric string as metadata of file.
6. Fragment the file.

Upload
7. Upload the file.

Verification
8. For verification, recalculate the message digest using the
key stored.
Retrieve stored protected metadata and alphanumeric
string.
Then perform xor of alphanumeric string and calculated
metadata. If received protected metadata and calculated
protected metadata are same then file is intact
otherwise file is tampered.

Decoding
9. If data alteration is found in verification phase, then run
decoding algorithm to recover the original data.
For this first retrieve inverted matrix.
Perform multiplication of inverted matrix with data of
fragments to get original data.

IV. RESULTS
The proposed approach is implemented using Amazon
Storage Services. Eclipse Luna is used as editor. The java
code is compiled using jdk1.8.

TABLE I
FILE SIZE AND METADATA SIZE

File Size
1 KB 5 KB 10 KB

Proposed
Method

Proposed
Method

Proposed
Method

Size of File
Uploaded

1 KB 5 KB 10 KB

Size of
Metadata

32 bytes 32 bytes 32 bytes

Metadata Generation

Encoding

Verification

Decoding

Input File

Recovered File

 Charmee V. Desai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2934-2937

www.ijcsit.com 2935

Table 1 shows the comparison of file size of uploaded file
and the size of metadata. In proposed method size of
uploaded file is same as original and size of metadata is 32
bytes for all file size.

Figure 2 File Size Comparison

Fig 2 shows comparison of size of the uploaded file and
original file size. It can be observed that file size is doubled
when uploaded as size of metadata is same as file size and
metadata is appended with the original file which increases
the communication overhead.

Figure 3 Metadata Size Comparison

Fig 3 shows in base method size of metadata increases with
file size where as for proposed method it remains constant.
As message digest produced is constant in size 256 bits (32
bytes) as HMAC SHA 256 function is used regardless of
file size.
Next Time Complexity for various file Size is measured.
Below chart shows the time taken to complete the entire
processing.

Figure 4 Time Complexity of proposed Method for
various file size

Fig 4 shows the comparison of time taken for various file
size. As file size increases time increases. This time
includes encoding ,uploading, downloading and decoding
time. Time taken also depends upon the network bandwidth
and delay.

V. CONCLUSION AND FUTURE WORK
In existing method , integrity of the remotely stored file is
checked. In this method random bits are selected and used
as metadata, So this method checks the integrity of the only
selected bytes. If data damage found then there is no
mechanism available to recover the data.
In proposed method, using the keyed hash function
metadata is generated which uses the key and message
itself. So using this integrity of entire file is checked.
Moreover for data recovery encoding is done. Using
decoding algorithm data are recovered. As file is uploaded
in encoded format it provides kind of confidentiality. Size
of the uploaded file is same as original file results less
communication overhead compared to existing method.
Future work is to support dynamic operations along with
integrity checking and data recovery without downloading
the original file.

ACKNOWLEDGMENT
I would like to express my sincere thanks to my guide Prof.
G.B. Jethava (Head, IT Department), for his great efforts
and encouraging for this work. I am very much thankful
for his continuous guidance & support. I would like to
thanks all my friends and family members for their support.

REFERENCES
[1] Amazon.com, “Amazon s3 Availability Event: July 20, 2008,” July

2008. http://status.aws.amazon.com/s3-20080720.html
[2] M. Arrington, “Gmail Disaster: Reports of Mass Email Deletions,”

Dec. 2006. http://www.techcrunch.com/2006/12/28/gmail-
disasterreports-of-mass-email-deletions/

[3] http://aws.amazon.com/agreement/
[4] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.

Peterson, and D. Song, “Provable Data Possession at

0

2

4

6

8

10

12

1 KB 5 KB 10 KB

Si
ze
 o
f
U
p
lo
ad

e
d
 F
ile

 (
K
B
)

Original File Size

Propose

1000
bytes

5000
bytes

10000
bytes

32 bytes 32 bytes 32 bytes

1 KB 5 KB 10 KB

File Size

Metadata Size Comparison

Base Proposed

0

20

40

60

80

100

120

1013 4229 10354 20536 25627

Ti
m
e
 (
Se
co
n
d
s)

File Size (bytes)

Time Complexity

 Charmee V. Desai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2934-2937

www.ijcsit.com 2936

Untrusted Stores,” Proc. 14th ACM Conf. Computer and Comm.
Security (CCS ’07), pp. 598-609, 2007.

[5] A. Juels and B.S. Kaliski Jr., “Pors: Proofs of Retrievability for
Large Files,” Proc. 14th ACM Conf. Computer and Comm.
Security (CCS ’07), pp. 584-597, 2007.

[6] Sanchika Gupta,Anjani Srdan, Padam kumar,Ajit Abraham,”A
Secure and Lightweight Approach for Critical Data Security in
Cloud” in Proc.CASoN-IEEE Jan 2012

[7] Pa.Varalakshmi, Hamsavardhini Deventhiran, “Integrity Checking
for Cloud Environment Using Encryption Algorithm,” in Proc.
ICRTIT-IEEE 2012

[8] Sravan Kumar R, Ashutosh Saxena, “Data Integrity Proofs in
Cloud Storage,” in Proc. COMSNETS-IEEE Jan,2011

[9] Wenjun Luo, Guojing Bai,”Ensuring The Data Integrity in Cloud
Data Storage ” in Proc. CCIS-IEEE Jan 2011

[10] Thanh Cuong Nguyen, Wenfeng Shen, Zhou Lei, Weimin Xu,
Wencong Yuan, Chenwei Song” A Probabilistic Integrity
Checking Approach for Dynamic Data in untrusted Cloud Storage”
in Pro. ICIS-IEEE pp.179-183 2013

 Charmee V. Desai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2934-2937

www.ijcsit.com 2937

